Protein quantification – E. Vierling's method modified for 96-well plate use Modified by Jessie 4-1-08

With one 96-well plate, you can quantify up to 88 protein samples with 6 standards and 2 negative controls.

Equipment and Supplies:

- BSA Stock Solution 8ug/uL in protein extraction buffer
- Sample buffer used in protein extractions
- Coomassie blue stain (see recipe below)
- Coomassie destain (see recipe below)
- 2% SDS Solution
- Filter Paper
- 96 well plates, flat bottomed
- 3 small containers (for destaining)
- Hole punch
- Spectrophotometer
- Shaking/rotating platform

1. Make up BSA standards of 0.5, 1.0, 2.0, 4.0, 6.0, and 8.0 ug/uL:

- a. Start with stock of 8.0 ug/uL diluted in sample buffer, NOT water
- To change concentrations or final volume, see spreadsheet "serial dilutions calc.xls"
- b. label 6 0.5mL microfuge tubes with the 6 concentrations and date
- c. make up the dilutions according to the chart below

Standard concentrations (ug/ul)	volume solutio (ul)	e of stock n to add	volume of solvent to add (ul)	final volume (ul)
	0.5	1.875	28.125	30
	1	3.75	26.25	30
	2	7.5	22.5	30
	4	15	15	30
	6	22.5	7.5	30
	8	30	(30

d. After using, store standards in the refrigerator. Since we use 2 ul per sample, this should be enough for 14-15 protein concentration quantifications.

2. Plan 96-well plate and record a well # for each sample including the 6 standards and 2 negative controls.

a. for now, record the well # and sample ID or standard concentration next to the well in a spreadsheet *Once we have our own spec up and running, we should be able to enter this into a spreadsheet so that the absorbances will be matched up with each sample.*

3. Set up the Plate

- a. Cut a piece of filter paper to just smaller than a 96-well plate.
- b. Cut a small triangle off of the top right corner. This will allow you to orient your paper correctly later.
- c. Place the filter paper on top of a regular 96 well plate and under the 96-well plate with the bottoms cut out. This plate will simply serve as a guide for pipetting into the correct place.

4. Pipette samples onto filter paper.

- a. Spot 2ul of each standard and each sample onto the corresponding well of the 96-well plate onto the filter paper.
- b. Change pipette tip between EVERY replicate and EVERY sample!
- c. Allow filter paper to dry thoroughly. (fans or hood?)

5. Coomassie Blue Stain:

- a. Place the filter paper in a plastic box.
- b. Pipette enough Coomassie Blue to just cover the paper, 5-10 mL.
- c. **DO NOT** pipette directly onto stain spots!!!
- d. DO NOT shake or agitate during staining!!!
- e. Stain for 15 minutes.

6. Destaining

- a. Prepare 3 baths of destain. I need to find small containers for this.
- b. Using forceps, remove filter paper from 96-well plate lid.
- c. Place into bath.
- d. Secure bath to shaking/rotating platform.
- e. Shake/Rotate for 15-20 minutes in first bath.
- f. Repeat for next 2 baths.
- e. Remove papers from final bath and dry in test tube racks (time)?

7. Protein elution

- a. Get a clean 96-well plate
- b. Fill each well that you will use with 300 uL of 2% SDS.

c. Orient the filter paper with the triangle cut out at the top left corner. You should be able to see light blue protein "spots" in the 96-well pattern.

d. With a hole punch, cut out each spot from the filter paper and place into the appropriate well.

e. <u>Negative Control</u>: punch out a circle of filter paper from the edge of the paper (where there should be no protein).

- f. cover plate tightly with a plate seal so that samples cannot spill into other wells.
- g. Place tubes in rotator overnight.

8. Read absorbance of samples – if using the Tonsor Lab microplate reader, see the microplate reader protocol for this step. (microplate spec prtcl.doc)

- a. set spectrophotometer to a wavelength of 595 nm
- b. the negative control should be used as a "blank."
- c. Read and record absorbance of all samples..

9. Protein sample quantification

- a. Graph the BSA standards absorbance against the concentration:
 - the easiest way is to plot concentration on the y axis and absorbance on the x-axis.
- b. perform a linear regression and calculate r^2 and the equation of the line. In excel:
 - i. graph absorbance vs concentration with a scatterplot
 - ii. label axes and create title
 - iii. click on the points on the scatterplot
 - iv. go to chart then choose "add trendline."
 - v. Under type, choose linear. Under options, choose "display equation on chart" and "display r^2 value on chart".
 - vi. click ok

c. calculate protein concentrations of samples (if your r^2 value is less than 0.95, be aware that your concentrations are not as accurate as they should be)

i. if you plotted concentration on the y-axis and absorbance on the x axis, the concentration of each sample can be calculated by substituting the absorbance of the sample in for x.

Recipes

Coomassie Stain Solution (1L)

450 mL Methanol
450 mL dd H₂O
100 mL glacial Acetic Acid
2.0 g of Commassie Brilliant Blue **R-250**

Destain (5 L)

 $\begin{array}{ll} \mbox{Methanol} & 1.5 \ \mbox{L} \\ \mbox{Glacial Acetic Acid} & 500 \ \mbox{mL} \\ \mbox{dd} \mbox{H}_2 \mbox{O} & 3 \ \mbox{L} \end{array}$

Concentration

30% by volume 10% by volume 60% by volume