Calculation of Transpiration and Assimilation for samples of varying leaf area. Tonsor Lab Nov $2\,2007$ Equations used by LiCor 6400 for automatic calculations Transpiration $$E_{W} = \frac{\mu_{e} (w_{c} - w_{e})}{s_{L} 10^{5} \left(1 - \frac{w_{c}}{1000}\right)}$$ | | LiCor | | | |--------------------|--------|---|--| | Parameter | Output | Description | Units | | E_{w} | Trmmol | Transpiration rate | mmoles m ⁻² s ⁻¹ | | μ_{e} | Flow | Air flow rate entering leaf chamber | μmoles s ⁻¹ | | W _c | H2OR | Mole fraction H ₂ O vapor refer. air | mmoles H ₂ O / mole air | | W _e | H2OS | Mole fraction H ₂ O vapor sample air | mmoles H ₂ O / mole air | | $s_{ m L}$ | Area | Leaf area | cm ² | Net Photosynthesis $$A_{\rm C} = \frac{\mu_{\rm e} (c_{\rm c} - c_{\rm e})}{100 s_{\rm L}} - c_{\rm c} E_{\rm W}$$ | | LiCor | | | |----------------|--------|---|--| | Parameter | Output | Description | Units | | $A_{\rm C}$ | Photo | Carbon assimilation rate | μmoles m ⁻² s ⁻¹ | | $\mu_{ m e}$ | Flow | Air flow rate entering leaf chamber | μmoles s ⁻¹ | | c _c | CO2R | Mole fraction CO ₂ reference air | μmoles CO ₂ / mole air | | c _e | CO2S | Mole fraction CO ₂ sample air | μmoles CO ₂ / mole air | | $s_{ m L}$ | Area | Leaf area | cm ² | | E _w | Trmmol | Transpiration of H ₂ O vapor | mmoles m ⁻² s ⁻¹ | Adjustment for variable leaf area $$E_{Wadj} = \frac{s_L}{s_A} \left[\frac{\mu_e \left(w_c - w_e \right)}{s_L 10^5 \left(1 - \frac{w_c}{1000} \right)} \right]$$ $$E_{Wadj} = \frac{s_L}{s_A} E_W$$ where S_L = the cuvette default leaf area $$S_A$$ = the actual leaf area $$set \frac{S_L}{S_A} = S_{adj}$$ $$so \quad E_{Wadj} = S_{adj} E_W$$ LiCor suggests the following formula for calculating Ac, once we have adjusted their formula for variable leaf areas in the cuvette: $$\begin{aligned} A_{Cadj} &= S_{adj} \left[\frac{\mu_{e} \left(c_{c} - c_{e} \right)}{100 s_{L}} \right] - c_{c} E_{Wadj} \\ &= S_{adj} \left[\frac{\mu_{e} \left(c_{c} - c_{e} \right)}{100 s_{L}} \right] - \frac{c_{c} S_{adj} E_{W}}{1000} \\ &= S_{adj} A_{C} \end{aligned}$$ NOTE that the LiCor people neglected to adjust for the fact that they output $A_{\rm C}$ in micromoles and $E_{\rm W}$ in millimoles. Therefore their formula for adjusting $A_{\rm C}$ to account for $E_{\rm W}$ requires that the term involving $E_{\rm W}$ be divided by 1000 to put it in millimolar units as well. Transpiration adjustment written in terms of LiCor 6400 output variables AreaAdj = Area/AreaMeasured $$\begin{split} E_{\text{Wadj}} &= AreaAdj^*E_W \\ A_{\text{Cadj}} &= AreaAdj^*A \end{split}$$