Calculation of Transpiration and Assimilation for samples of varying leaf area. Tonsor Lab Nov $2\,2007$

Equations used by LiCor 6400 for automatic calculations

Transpiration

$$E_{W} = \frac{\mu_{e} (w_{c} - w_{e})}{s_{L} 10^{5} \left(1 - \frac{w_{c}}{1000}\right)}$$

	LiCor		
Parameter	Output	Description	Units
E_{w}	Trmmol	Transpiration rate	mmoles m ⁻² s ⁻¹
μ_{e}	Flow	Air flow rate entering leaf chamber	μmoles s ⁻¹
W _c	H2OR	Mole fraction H ₂ O vapor refer. air	mmoles H ₂ O / mole air
W _e	H2OS	Mole fraction H ₂ O vapor sample air	mmoles H ₂ O / mole air
$s_{ m L}$	Area	Leaf area	cm ²

Net Photosynthesis

$$A_{\rm C} = \frac{\mu_{\rm e} (c_{\rm c} - c_{\rm e})}{100 s_{\rm L}} - c_{\rm c} E_{\rm W}$$

	LiCor		
Parameter	Output	Description	Units
$A_{\rm C}$	Photo	Carbon assimilation rate	μmoles m ⁻² s ⁻¹
$\mu_{ m e}$	Flow	Air flow rate entering leaf chamber	μmoles s ⁻¹
c _c	CO2R	Mole fraction CO ₂ reference air	μmoles CO ₂ / mole air
c _e	CO2S	Mole fraction CO ₂ sample air	μmoles CO ₂ / mole air
$s_{ m L}$	Area	Leaf area	cm ²
E _w	Trmmol	Transpiration of H ₂ O vapor	mmoles m ⁻² s ⁻¹

Adjustment for variable leaf area

$$E_{Wadj} = \frac{s_L}{s_A} \left[\frac{\mu_e \left(w_c - w_e \right)}{s_L 10^5 \left(1 - \frac{w_c}{1000} \right)} \right]$$

$$E_{Wadj} = \frac{s_L}{s_A} E_W$$
 where S_L = the cuvette default leaf area

$$S_A$$
 = the actual leaf area

$$set \frac{S_L}{S_A} = S_{adj}$$

$$so \quad E_{Wadj} = S_{adj} E_W$$

LiCor suggests the following formula for calculating Ac, once we have adjusted their formula for variable leaf areas in the cuvette:

$$\begin{aligned} A_{Cadj} &= S_{adj} \left[\frac{\mu_{e} \left(c_{c} - c_{e} \right)}{100 s_{L}} \right] - c_{c} E_{Wadj} \\ &= S_{adj} \left[\frac{\mu_{e} \left(c_{c} - c_{e} \right)}{100 s_{L}} \right] - \frac{c_{c} S_{adj} E_{W}}{1000} \\ &= S_{adj} A_{C} \end{aligned}$$

NOTE that the LiCor people neglected to adjust for the fact that they output $A_{\rm C}$ in micromoles and $E_{\rm W}$ in millimoles. Therefore their formula for adjusting $A_{\rm C}$ to account for $E_{\rm W}$ requires that the term involving $E_{\rm W}$ be divided by 1000 to put it in millimolar units as well.

Transpiration adjustment written in terms of LiCor 6400 output variables AreaAdj = Area/AreaMeasured

$$\begin{split} E_{\text{Wadj}} &= AreaAdj^*E_W \\ A_{\text{Cadj}} &= AreaAdj^*A \end{split}$$